

Lleida 27-29 March 2023

Intercomparison of high spatial resolution surface soil moisture products derived from microwave data

N. Ouaadi, L. Jarlan, M, Le Page, G. Paolini, M. Zribi, N. Ojha, M. J. Escorihuela and A. Boone

Surface soil moisture products

<u>Literature</u> / numerous intercomparison studies of SSM products at coarse resolution

- ASCAT (12.5 km 1km)
- SMAP (36 km 1km)
- SMOS (25 km -1km)
- ESA CCI (25 km, -1km)

■ …

Qu et al. 2021; Al-Yaarial. 2019; Kim et al. 2018; Brocca et al. 2011; Gruhier et al. 2010; Rüdiger et al. 2009 ...

Lack of such studies at high spatial resolution / more relevant for plot-scale applications

High spatial resolution SSM products increasingly available

- 1. Downscaling of passive microwave data SMAP and SMOS
- 2. High resolution radar data / free products from Sentinel-1

Kim et al. 2018

→ Intercomparison of high spatial resolution SSM products within the frame of LIAISE project

Study area

Urgell region (Catalonia-Spain)

SSM database collected during 2021

- 1. Site I : Prat De Boldu
- 2. Site II : Ivars
- Semi-arid influenced by a continental climate
- Annual precipitation ~ 376 mm/year
- Variable air temperature (mild winter and hot summer)

Prat De Boldu / LONIM soil moisture network

- Low-cost network designed at CESBIO (Toulouse)
- Hourly measurements
- A network of 11 soil moisture stations installed over 11 fields (gateway receiving and storing data and transmit to a server)
 - \rightarrow Winter fields : March April
 - → Summer fields : May September
- fields cropped with : barley, wheat, maize, peas, alfalfa and apple trees
- Irrigation : Flood, sprinkler and drip

Ivars / Manually soil moisture dataset

- Field campaigns during two weeks of July : 15→28 July 2021
- Collected using thetaprobs
- 22 fields
- cropped with : wheat, maize, alfalfa pear and apple trees
- Irrigation : Flood and drip irrigation

4 products are initially investigated

1

Theia product

Plot scale product derived from a synergy of Sentinel-1 and Sentinel-2 using a machine learning algorithm (available via the Theia website)

El Hajj et al. 2017

SMAP20m product

Product at 20 m resolution disaggregated from SMAP using Sentinel-3 and Sentinel-2 data

2

Coherence (p) product

Product at 14 m resolution derived from Sentinel-1 backscattering coefficient and interferometric coherence using a brute-force algorithm

SMAP100m product

Product at 100 m resolution derived from SMAP disaggregated using Landsat 7 and 8

Prat De Boldu

- Good results obtained using Sentinel-1 products in particular ρ product
- The main problem limiting the performance of Theia is the quick saturation at ~0.3 m³/m³
- SMAP20m can reach higher values but there is a significant insensitivity for SSM>0.25 m³/m³
- SMAP100m, similar performance as SMAP20m with a lower data number because of the low temporal resolution of LandSat combined with the cloud cover presence

Results / SSM scatterplots

CESBIO

lvars

- Good results obtained using Sentine-1 products in particular ρ product
- Measurement ~limited to 0.3 m³/m³ \rightarrow Theia provide also good estimates
- SMAP20m is insensitive for SSM>0.25 m³/m³
- SMAP100m is not provided because of the limited number of available data

All data (Prat De Boldu + Ivars)

- Good results obtained using Sentine-1 products in particular coherence
- The main problem limiting the performance of Theia is the quick saturation at ~0.3 m3/m3
- SMAP20m can reach higher values but there is a significant insensitivity for SSM>0,25 m3/m3
- SMAP100m, similar performance as SMAP20m with a lower data because of the low temporal resolution of LandSat combined with the cloud cover presence

Results / SSM time series over Prat De Boldu

- SSM variation better captured by Sentinel-1 products
- Accurate maximum values retrieved using ρ product
- SMAP20m and SMAP100m are limited in [0.1, 0.2]
- SMAP20m is frequent but can't capture the irrigation signal →
 Sentinel-2 does not contain the information on SSM
- High values retrieved using SMAP20m around 20/6 because of a rainfall event (observed in all fields)
- SMAP100m : low number of data

Results / SSM time series over Prat De Boldu

- Limited performance of Sentinel-1 products over some fields
- Over trees : need for parameter calibration of the backscatter model over trees
- Limited performance of SMAP20m and SMAP100m
- Long periods without SMAP20m and SMAP100m because of the presence of clouds

Results / statistical metrics comparaison

Prat De Boldu

- ρ outperform the 3 approaches for 8 of 11 fields
- SMAP20m outperform the approaches over 3 plot in winter : no data for the irrigated period + daily data at the end of the season

-but higher RMSE and significant underestimation of SSM

SSM mapping

- Maps at 100m resolution (GLORI resolution)
- All the approaches can differentiate between the irrigated and non irrigated parts
- Similar spatial pattern between p and Theia products with differences in the max values
- An irrigated part is detected by Sentinel-1 approaches only (right-bottom)
- Missing data in Theia probably because of the approach limitation (masked crops?)
- SMAP20m is similar to NDVI map

SSM mapping

CESBIO

- Problem of cloud : SMAP20m with several pixels contaminated and SMAP100m not available
- Difference in the rightbottom side between two Sentinel-1 approaches
 →difference in the scale (SSM around 0.25 in both)
- More homogeneous due to a large irrigation event
- More spatial pattern in p approach because of SSM higher range (Theia saturate at 0.3)

- The high resolution surface soil moisture products are increasingly available and need to be evaluated over different area to be used (more relevant at the plot scale application)
- Sentinel-1 derived approaches outperform the desegregated products \rightarrow Coherence can reach high values of SSM comparing
- Saturation of Theia products at 0.3 \rightarrow lower accuracy if SSM>0.3
- Radar approaches can be improved by specifying backscatter coefficients for each vegetation type
- SMAP20m can't catch the irrigation signal \rightarrow insensitivity to SSM variation /use of Sentinel-2 optical data for disaggregation which do not contain SSM related information.
- SMAP20m and SMAP100m can be improved by using thermal data in the perspective of new missions such as TRISHNA and LSTM with both high temporal and spatial resolution data.