

Evaporation driven by atmospheric boundary layer processes over a shallow salt-water lagoon in the Altiplano Desert

Francisca Aguirre-Correa*, Jordi Vilà-Guerau de Arellano, Reinder Ronda, Felipe Lobos-Roco, Francisco Suárez, and Oscar Hartogensis

UNIVERSITY & RESEARCH

Credits to Oscar Hartogen

In the Altiplano (\sim 1500 km) water is evaporated from highly localized environments (\sim 10 km)

Lobos-Roco et al. (2021)

Local E is controlled by interactions with large-scale forcing driven by the steep topography and the Pacific Ocean

What role does the atmospheric boundary layer play in all of this?

We use an Adapted Penman equation to salt-water conditions as a diagnostic tool for E

We use a land-atmosphere conceptual model to analyse the drivers of evaporation

We use WRF-LES model to characterize the regional transport and better represent the local atmosphere

We use a land-atmosphere conceptual model to analyse the drivers of evaporation

Experiments: Base Case

Experiments: + Wind

Experiments: + Mass advection

Experiments: + θ and q advection

150 km

Base Case: small surface fluxes

	Land- atmosphere interactions and Subsidence	Prescribed wind, dynamic z0	Mass advection, RL	Temperature advection	Moisture advection
Base Case	\checkmark	X	X	X	X
+ Wind	\checkmark	\checkmark	X	X	X
+ Mass advection	\checkmark	\checkmark	\checkmark	X	X
+ θ and q advection	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Radiative contribution Aerodynamic contribution

+ Wind: mechanical turbulence triggers surface fluxes

+ Mass advection: intermediate step

	Land- atmosphere interactions and Subsidence	Prescribed wind, dynamic z0	Mass advection, RL	Temperature advection	Moisture advection
Base Case	\checkmark	X	X	X	X
+ Wind	\checkmark	\checkmark	X	X	X
+ Mass advection	\checkmark	\checkmark	\checkmark	X	X
+ θ and q advection	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Radiative contribution Aerodynamic contribution

+ θ and q advection: dynamic behaviour is better represented

10

Remarks

- The atmospheric boundary layer is mainly driven by advection
- Evaporation is mainly triggered by turbulence when the regional flow arrives
- **Evaporation** is also driven by the interaction with the ABL:
 - Mass advection of a deeper boundary layer from the surrounding desert
 - o Cold and dry air advection that allows to describe the dynamic behaviour

The understanding of

the ABL dynamics is key to understand evaporation regimes in the Altiplano!

ACKNOWLEDGEMENTS

ATE/ 220005 - FSEQ/210018 - FONDECYT/ 1210221 BECAS/ DOCTORADO NACIONAL/ 21211730

e Innovación

Gobierno de Chile

Evaporation driven by atmospheric boundary layer processes over a shallow salt-water lagoon in the Altiplano Desert

Francisca Aguirre-Correa*, Jordi Vilà-Guerau de Arellano, Reinder Ronda, Felipe Lobos-Roco, Francisco Suárez, and Oscar Hartogensis

⊠ faguirre2@uc.cl

UNIVERSITY & RESEARCH

Credits to Oscar Hartogen

Appendix: WRF animations

Appendix: CLASS h

Appendix: CLASS profiles

Appendix: CLASS temperature and moisture

Appendix: WRF surface validation

Water

Desert

Appendix: WRF surface validation

Water

Desert

21/11 09:00 21/11 16:00 21/11 23:00 22/11 06:00 22/11 13:00 22/11 20:00

21/11 09:00 21/11 16:00 21/11 23:00 22/11 06:00 22/11 13:00 22/11 20:00

21/11 09:00 21/11 16:00 21/11 23:00 22/11 06:00 22/11 13:00 22/11 20:00

21/11 09:00 21/11 16:00 21/11 23:00 22/11 06:00 22/11 13:00 22/11 20:00

Appendix: WRF ABL validation

7

7

7

Appendix: desert

Advection approach

