

1ST LIAISE CONFERENCE AND DETERMINING EVAPOTRANSPIRATION CROSSCUT WORKSHOP

MAR 27 - 29, 2023 | LLEIDA, SPAIN

Classification of Different Irrigation Systems at Field Scale Using Annual Time-Series of Remote Sensing Data

Giovanni Paolini^{1,3}, Maria Jose Escorihuela¹, Olivier Merlin², Magí Pamies-Sans³, Joaquim Bellvert³ ¹isardSAT, Barcelona, Spain / ²CESBIO, Toulouse, France / ³ IRTA, Lleida, Spain

Institute of Agrifood Research and Technology

Introduction

Why obtaining classification maps of irrigation systems? Mitigating water demands

- 1. Currently there is no precise/reliable information regarding irrigated area and irrigation systems in Catalonia
- 2. Replace the simplistic assumption of irrigation scenarios used in many Land Surface Models (LSM). -> reduce uncertainty.
- 3. Promote and supervise the shift towards more sustainable and efficient irrigation methods. -> optimize water use.

Hypothesis of Study

Temporal series of actual crop evapotranspiration, and surface soil moisture (estimated from remote sensing) should vary among parcels of different irrigation systems

Study Area

Field Campaign - Distribution of Fields

> 300 fields

Field Campaign - Crop Detection

Field Campaign - Number of Fields

IDDIGATION SYSTEM	CDOD TYPE	Number of Fields			FIELD	PIXEL
IKRIGATION STSTEM		2018	2018 2019		LEVEL	LEVEL
	FRUIT and NUT TREES	78	78	78	234	24201
DRIP	VINEYARD	12	12	12	36	4599
	OLIVE	11	11	11	33	3201
	MAIZE	8	8	8	24	10950
SPRINKLER	DOUBLE CROPS	55	56	56	167	43849
	ALFALFA	7	7	7	21	3777
	WINTER CEREALS	9	9	9	27	444
	MAIZE	14	14	13	41	1322
FLOOD	DOUBLE CROPS	32	33	33	98	5859
	ALFALFA	9	9	9	27	2733
	FRUIT and NUT TREES	18	18	18	54	1734
	WINTER CEREALS	40	36	40	116	27584
NOT IRRIGATED	FRUIT and NUT TREES	13	13	13	39	1578
	VINEYARD	7	7	7	21	867
	OLIVE	17	17	17	51	6231
TOTAL		330	328	331	989	138929

Input ETact

Input ETact

Input Dispatch SM

O Product

Process

On going validation of the product with in-situ SM values in different sites in the area...

Input Dispatch SM

Al models tested

TABLE IVOverview of the Models Used in This Study

MODELS	Reason for selection	Random Forest
Time Series Forest	Random forest is widely used in similar research [14]. Used as a benchmark.	Tree-1 Class-A Time-Class-B Tree-1 Class-B Tree-1
		Rocket
ROCKET	State-of-the-art accuracy [39] with low computational requirements.	$\begin{array}{llllllllllllllllllllllllllllllllllll$
		Convolutional neural network
ResNet	Deep neural network with flexible structure, it outperforms other models in general reviews [40].	$\mathbf{F}_{\mathbf{F}} \in \mathbf{The Reduct} Network's architecture for time series classification.$

Results I

Is the irrigation system only explained by the crop type?

Variables		Crop types						RESULTS	
variables	Winter Cereals	Maize	Double Crops	Alfalfa	Fruit & Nut Trees	Olives	Vineyards	Aggregated Models	General Model
<i>ET</i> _a -TSEB	81.25%	48.82%	91.67%	72.00%	74.88%	74.33%	96.19%	78.15%	79.33%
SM Dispatch	88.75%	76.47%	91.67%	66.67%	73.18%	73.33%	80.95%	78.36%	74.25%
ET_a+SM	90.62%	70.00%	93.75%	73.33%	81.71%	69.67%	96.67%	83.39%	81.89%

Results II

Results III

Results IV

	MODELS						
METRICS (%)	tsForest	ROCKET	ResNET				
Accuracy	85.29 ± 2.41	87.56 ± 2.95	90.10 ± 2.70				
Average Precision	85.43 ± 2.53	88.80 ± 3.12	90.33 ± 2.78				
Average Recall	84.76 ± 2.51	86.81 ± 3.17	90.02 ± 2.76				

Maps irrigation systems

Figure 7: Irrigation Types map (**a**) as delivered by SIGPAC [34] and as created by the ResNET model with ET_a and SM time-series for 2018 (**b**), 2019 (**c**) and 2020 (**d**).

Comparison: SIGPAC 2021

Comparison: SIGPAC 2021

Summary: Framework

Thank you!

Any questions?

