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INTRODUCTION
SURFACE FLUXES ARE THE 2nd SOURCE OF ERRORS IN THE GLOBAL AND REGIONAL NUMERICAL MODELS1  (WGNE)

Several local measurements are needed to sample different land surfaces
↪ one eddy-covariance station to sample one land surface

Introduction Methodology Results Perspectives

1 Carolyn Reynolds, Keith Williams, Ayrton Zadra: WGNE Systematic Error Survey Results 
Summary, February 2019.
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2 Jason Kelley, Eric Pardyjak, Using Neural Networks To Estimate Site-Specific Crop 
Evapotranspiration with Low-Cost Sensors, 23 February 2019. 
3  M. Kumar, N. S. Raghuwanshi, R. Singh, Artificial neural networks approach in 
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GOAL : Test this method in order to propose an experimental 
deployment plan to apply it during field campaigns
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Use of Artificial Neural Network (ANN) : 

(p1, p2, p3, p4, p5)

(EC flux)

(ANN flux)

ANN
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ONE YEAR-LONG DATASET  : VARIABILITY OF THE CONDITIONS (2m tower over a prairie)

↪ definition of the input variables : 
- time (cyclical)
- air temperature
- air humidity
- two horizontal wind components (u,v)
- shortwave income

↪ definition of an optimised architecture (architecture/dataset co-dependency)

↪ definition of the rotation frequency (importance the variety of conditions encountered in the training set)
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1 week for training
4 weeks for test

Scenario 1 
2 weeks for training

8 weeks for test

Scenario 2 
3 weeks for training

12 weeks for test

Scenario 3 
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1 week for training
4 weeks for test

Scenario 1 

Week #1

Surface 1
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1 week for training
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Scenario 1 
1 week for training

4 weeks for test
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4 weeks for test

Scenario 1 

Training set 
Test set

Week #2, #3, #4, #5Week #1 Week #6

Surface 1



ROTATION FREQUENCY RESULTS
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Test the influence of the different scenarios
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std
std

std
std

1 week for training
4 weeks for test

Scenario 1 

2 weeks for training
8 weeks for test

Scenario 2 

3 weeks for training
12 weeks for test

Scenario 3 

Sc.1                  Sc.2                   Sc.3

Sc.1                  Sc.2                   Sc.3

The 3rd scenario (3 weeks for 
training) seems to be a good 
compromise (sampling weather 

conditions/logistics)

Architecture tested here :
1 hidden layer | 5 neurons



NETWORK TOPOGRAPHY RESULTS
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Test the influence of the architecture

The simpler, the better ! 

Scenario tested here : Scenario #2

5 neurons on 1 hidden-layer seems to 
be enough here to properly estimate 
fluxes
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ESTIMATED FLUXES
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      sept      oct       nov      dec       jan       feb      mar      apr      may      jun       jul

Composite days for scenario 3, 5 neurons and 1 hidden-layer 
(monthly basis)

ANN
OBS

      sept      oct       nov      dec       jan       feb      mar      apr      may      jun       jul

the seasonal cycle is well represented



THE MOSAI CAMPAIGN :
Introduction Methodology Results Perspectives
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➡ frequency rotation : 3 weeks
➡ architecture : 1HL | 5N

Deployment of the method 
during the P2OA campaign (april 

2023)

Three sites instrumented with 
standard weather stations :

Maize
Prairie
Wheat
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THANKS !
Any questions ?

You can find me at :
mathilde.jome@aero.obs-mip.fr
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