

Model and observation for Surface Atmosphere Interactions

Fabienne Lohou

LOTHON M., BASTIN S., BRUT A., CANUT G., CHERUY F., COHARD J.-M., COUVREUX F., DARROZES J., DUPONT J.-C., FERNANDEZ R., JOME M., LAFONT S., ROEHRIG R., ROMÁN-CASCÓN C., ZOUZOUA M., and MOSAI team

Motivations

Working Group on Numerical Experimentation (Fev. 2019)

Motivations

MOSAI Objectives

WP1: uncertainty and horizontal representativeness of L-A exchanges measured over heterogeneous landscape

Climate or NWP model grid

WP3: Improvement of the L-A models coupling

WP2: Model evaluation using long-term measurements

Outline

- Motivations
- Objectives
- Strategy
- 2023 field experiment
- Some ongoing works for each objective
 - O1: Representativity
 - O2: New methods for model evaluation
 - O3: Improving surface/atmosphere coupling

MOSAI Strategy

Méso-NH/ SURFEX ; LES WRF / ORCHIDEE; Régional AROME / SURFEX; Regional

LMDZ / ORCHIDEE; Climate DYNAMICO / ORCHIDEE; Climate

Field campaign at P2OA

Main objective :

- Characterize the representativity of the P2OA 60 m tower relatively to the heterogeneous landscape

- Document the vertical structure
- Investigate the impact of a roughness transition

P2OA EOP: Surface heterogeneity

Deployment of flux stations:

- Prairies
- Deciduous forest
- Summer crops
- Urban in Lannemezan
- Winter crops
- Conifer forest / mixt forest

@CESBIO-Sentinel-2

4 km

MTO station → Flux estimates: see presentation Jomé et al

P2OA EOP: Surface heterogeneity

Deployment of flux stations:

- Prairies
- Deciduous forest
- Summer crops
- Urban in Lannemezan
- Winter crops
- Conifer forest / mixt forest

@CESBIO-Sentinel-2

4 km

P2OA EOP: Exploring a specific transition

P2OA EOP: Exploring a specific transition

- -Vertical structure across the transition
- Impact on fluxes and influence of atmospheric structures within canopees
- Effective roughness

P2OA EOP: Exploring a specific transition

- -Vertical structure across the transition
- Impact on fluxes and influence of atmospheric structures within canopees
- Effective roughness

Ongoing O1

O1- Representativity

How to evaluate the representativity of reference long-term surface flux measurements in an heterogeneous landscape ?

See Poster from Mathilde Jomé (LAERO) ! Based on Meteopole EOP (2021)

- Surface heterogeneity indicators
- Link between

surface energy budget residual and flux heterogeneity

Loero 🔊 🕲 Toulouse

Kilun, N., Calanca, P., Rotach, M. W., and Schmid, H. P.: A simple to

Prediction (FFP ed-8-3695-2015, 2015,

O2 - New methods for model evaluation

Using neural network to estimate model bias

By Maurin Zouzoua, Sophie Bastin, Marjolaine Chiriaco (LATMOS)

Objective: Make a "fair" model/obs comparison, by freeing from differences in environmental forcings.

Ongoing O1, O2

O2 - New methods for model evaluation

Using neural network to estimate model bias

By Maurin Zouzoua, Sophie Bastin, Marjolaine Chiriaco (LATMOS)

Observational data from Meteopole, Toulouse (Jun 2012 - Dec 2021)

Trained MLP performs well
Difficulties for H estimation in strongly stable surface layer
Difficulties in cases of large LE

O2 - New methods for model evaluation

Using neural network to estimate model bias

By Maurin Zouzoua, Sophie Bastin, Marjolaine Chiriaco (LATMOS)

O3 : Improving surface/atmosphere coupling

Impact of surface heterogeneity on the boundary layer flow and nearsurface turbulent exchanges in an LES framework.

by Royston Fernandez, Fleur Couvreux, CNRM

MesoNH/SURFEX coupled LES

O3 : Improving surface/atmosphere coupling

Impact of surface heterogeneity on the boundary layer flow and nearsurface turbulent exchanges in an LES framework.

- Heterogeneity slightly increases mean flux and roughness (larger than the weighted average)
- Near surface wind is more influenced

- BL slightly deeper, but remains well homogeneous, and independent of patch size and distribution

Objectives > Strategy

Motivations

O3 : Improving surface/atmosphere coupling

Impact of surface heterogeneity on the boundary layer flow and nearsurface turbulent exchanges in an LES framework.

More to come soon...

Thank you !

Web site & Data base: https://mosai.aeris-data.fr/

O3 : Improving surface/atmosphere coupling

Impact of surface heterogeneity on the boundary layer flow and nearsurface turbulent exchanges in an LES framework.

8000 10000

8000 10000

by Royston Fernandez, Fleur Couvreux, CNRM

GM64P 10000 8000 Distance (m) 6000 4000 2000 0 8000 10000 2000 4000 6000 0 Distance (m) GMF3P 10000 8000 Distance (m) 6000 4000 2000 0 2000 4000 6000 8000 10000 0

Distance (m)

MesoNH/SURFEX coupled LES

Motivations Objectives Strategy Ongoing 01, 02, 03

O3 : Improving surface/atmosphere coupling

Impact of surface heterogeneity on the boundary layer flow and nearsurface turbulent exchanges in an LES framework.

