Surface thermal heterogeneities in the eastern Ebro basin and their impact on regional circulations Universitat de les Illes Balear

A. Torres, A. Grau, M.A. Jiménez and J. Cuxart

OBJECTIVE

and topography

1000

METODOLOGY

Satellite-derived Land-Surface temperatures (2009-19) are averaged over 4 regions (according to agricultural practises, see polígons on the left): drip & flood irrigated, rainfed slopes and mountain

Stable nights/days are selected following this criteria applied to 6 AWS (*Grau et al., 2021, JAMC*):

- 1. Clear-sky
- 2. Weak wind

- During nighttime winds are from [S,SE]. For stable nights they are weaker than for non-stable
- Winds are from W for stable days and stronger than during nighttime
- The analysed year 2016 behaves as the climatology from Grau et al. (2021)

✓ Thermal differences

are specially important during **daytime and summer** (the flood region is colder than the rest due to the wet soil), **favouring W circulations**

✓ ΔT_5 presents the **largest gradient** and this pattern is similar for all the years 2009-19

✓ ΔT_5 **dominates** during daytime whereas ΔT_3 during nighttime

Temporal evolution (2009-19) of the averaged thermal differences (daytime, 12-15UTC and nighttime, 0-3UTC) during summer (JJA) for all, stable and non-stable days

- ✓ △T₁: NO differences between stable and non-stable conditions and it ranges [0,2] ^oC during daytime and it is about 3 ^oC during nighttime, with the smallest variability (error bars) during the days of the year
- ✓ ΔT_3 and ΔT_5 : differences of [1,4] ^oC between stable/non-stable conditions, pointing that local circulations are related to these gradients, except during nigttime where ΔT_5 is (+) but E winds are reported (contrarily to this gradient): presence of cold pool (Grau et al., 2021)

SUMMARY

- Surface heterogeneities in the Eastern Ebro Subbasin are mainly due to the soil features related to the agriculture practice (irrigated and rainfed regions) and the topography.
- ✓ There are not significant differences between the flood and drip irrigated regions during the year but they are of about 2°C (ΔT_1) during summer daytime.
- ✓ Flood irrigated region is warmer than the mountains during daytime (ΔT_3) but this sign is inverted during summer due to the effect of irrigation.
- ✓ The largest temperature gradient is reported during summer daytime between the rainfed and the flood irrigated regions (ΔT_5) where the soil moisture reduced the radiative heating. Instead, the nearly baresoil at the slopes enhances the heating of the surface.
- ✓ There are differences in ΔT_3 and ΔT_5 for the stable and non-stable days and the above mentioned paterns **are reported for all the analyzed years** (2009-19).
- ✓ Locally-generated circulations are related to the above-mentioned ΔT , excepte for ΔT_5 during nighttime due to the presence of a cold pool in the bottom parts of the basin. These local winds interact with larger-scale winds (sea-breeze generated at the coast, up/down-river circulations, ...).