

Airborne SLAP Measurements for Soil Moisture Estimation

Edward Kim, Albert Wu, Hessam Izadkhah NASA Goddard Space Flight Center

LIAISE WG1 Meeting 28/04/2022

NASA Goddard's Scanning L-band Active Passive (SLAP) is...

- ...an airborne SMAP simulator with both passive (1.4 GHz) and active (1.2 GHz) microwave imaging capability
- Radiometer is 4-Stokes w/SMAP's digital backend + RFI processor + enhancements; footprints 100x200m from 1000 ft AGL
- Radar is a quad-pol scatterometer; footprints 350m from 2500 ft AGL (radar minimum altitude)
- Swath widths up to 8km/4.2nm (at 11500 ft AGL)
- Single-pixel thermal IR
- Compatible with several aircraft, currently on a King Air
- 1400km range in 4.5 hrs; day/night/VFR/IFR
- Capable of worldwide deployment

SLAP on bottom of NASA Langley King Air (UC-12) aircraft.

SLAP in LIAISE 2021

- July 15—29, 2021
- 9 science flights
- Mostly passive hi-res (blue box)
- but 2 times passive + active less hi-res (green box)
- Dry downs after irrigation and precip (July 26) observed

SLAP Soil Moisture Algorithm

29 July SLAP medium-altitude Quicklook

After

@La

Same color scale for all images

SLAP Passive vs. Active 29 July medium altitude Quicklooks

NASA SLAP quicklook H-pol uncalibrated comparison of 27 & 28 July overflight of Valencia Anchor Station (west of Valencia)

Uncalibrated Brightness Temperature Not soil moisture

Definite drying!

(Natural) fire site 28 July quicklook

Approximately similar color values, Implying similar temperature/dryness

Uncalibrated Brightness Temperature Not soil moisture

29 July SLAP quicklook of fire site GODARD

Same color scale for images from 28 July

Preliminary Findings

- Boundary between irrigated and non-irrigated areas is very clear
- Boundary of areas that received precip July 26 is also very clear
- Drydown following precip event is visible
- Farm field-scale spatial variations at ~200m resolution are clearly visible across a range of wetness and vegetation conditions
- Preliminary soil moisture images shown today use generic ancillary data values over whole domain; more localized ancillary data will allow more accurate soil moisture retrievals at/near those places
- Need assistance finding such localized or hi-res ancillary data
- Scattered RFI around some towns, but not enough to impact science in other areas

Summary

NASA's airborne SLAP sensor measured soil moisture during July 2021 as part of the European LIAISE campaign in Spain, providing a valuable opportunity to assess the advantages and limitations of potential higher-resolution observations from future satellite soil moisture missions or downscaled products over a well-understood and well-characterized environment. The preliminary soil moisture results presented here are at very high resolution (100x200 m footprints) compared with satellite soil moisture observations, and fine-scale spatial variations are clearly visible across a range of wetness and vegetation conditions.

Acknowledgement

We wish to thank the dedication of all those at NASA HQ, Langley, and Goddard and from Europe who made this deployment possible during the global pandemic!

