Airborne GLORI measurements for soil moisture estimation

Mehrez Zribi, Vincent Dehaye, Karin Dassas

28 April 2022

GLORI GNSS-R INSTRUMENT

GNSS-R technology

Instrument characteristics

Dual pol (LHCP & RHCP) hemispherical antennas

4 synchronized RF channels L1 centered, 8MHz BW

Direct down conversion, 10MSPS, IQ Relative channel calibration

Motte et al., 2016, Sensors, Zribi et al., 2018

Flights

Flight id	Date	Start (UTC)	End (UTC)	Flight Duration
40	15/07/21	10:23:30	15:19:04	04:55:34
41	16/07/21	10:26:42	15:19:04	04:52:22
42	17/07/21	10:37:17	15:34:04	04:56:47
43	20/07/21	09:51:09	15:00:00	05:08:51
45	22/07/21	10:38:10	14:50:05	04:11:55
46	27/07/21	10:23:54	14:28:32	04:04:38
47	28/07/21	10:23:45	14:27:36	04:03:51

In situ measurements

22 test fields during GLORI measurements

	Hrms (cm)	Lc (cm)	<i>Mv</i> (m3/m3)	LAI (m²/m²)
15/07/2021	-	-	[0.07-0.41]	-
16/07/2021	-	-	[0.04-0.39]	-
17/07/2021	-	-	[0.06-0.46]	-
19/07/2021			-	[1.07-2.54]
20/07/2021	-	-	[0.02-0.36]	-
21/07/2021	-	-	[0.06-0.38]	-
23/07/2021	[0.4-1.84]	[4-12.18]	-	[0-3.14]
27/07/2021	-	-	[0.12-0.40]	-
28/07/2021	-	-	[0.1-0.43]	-
29/07/2021	-	-	-	[0.14-3.42]

In situ measurements statistics

SM estimation using S1&S2

Approach for SM estimation using S1&S2: Neural Network (El Hajj et al., 2017)

Glori data processing

Flights

Flight id	Date	Start (UTC)	End (UTC)	Flight Duration
40	15/07/21	10:23:30	15:19:04	04:55:34
41	16/07/21	10:26:42	15:19:04	04:52:22
42	17/07/21	10:37:17	15:34:04	04:56:47
43	20/07/21	09:51:09	15:00:00	05:08:51
45	22/07/21	10:38:10	14:50:05	04:11:55
46	27/07/21	10:23:54	14:28:32	04:04:38
47	28/07/21	10:23:45	14:27:36	04:03:51

Technical problem in Amplifier for 4 first flights

Analysis of incidence angle effects

<u>Γ_RL:</u>

12

<u>Γ_RR:</u>

Reflectivity mapping, 100m or 200m

Reflectivity=f(NDVI)

14

Reflectivity sensitivity to soil moisture

REFLECTIVITY MODELLING

17

Based Tau-omega model, the covered soil reflectivity can be modeled as:

$$\Gamma_{p}(\theta) = \Gamma_{p}^{soil}(\theta) \cdot e^{-2 \cdot \tau_{p}^{canopy} / \cos \theta} \cdot \left(1 - \omega_{p}^{canopy}\right)^{2}$$

We considered the height parameter to model the optical thickness.

$$\tau_p = a. NDVI$$

In L band, the single-scattering albedo can be neglected for low vegetation cover

 $\Gamma_p(\theta) = \Gamma_p^{soil}(\theta). e^{-2.(a NDVI))/\cos \theta}$

 $\Gamma_{p}(\theta)_{dB} = \alpha M v + \beta NDVI / \cos(\theta) + \delta$

Conclusions and next steps

- A soil moisture product with \$1&\$2 data during 2021, each 6 days (Asc and Des orbits) at field scale
- → First results of GLORI data sensitivity to soil moisture

To do

- \rightarrow /Finalisation of soil moisture mapping with GLORI (3 flights)
 - Processing of flights with technical problems

Potential of comparison between GNSS-R and passive microwave L-band products

Thank you for your attention