

Measuring fluorescence & reflectance across spatial scales – LIAISE campaign July 2021

Bastian Siegmann, Julie Krämer, Nils Müller, Juan Quiros, Caspar Kneer, Patrick Rademske, Stephani Baum, Juliane Bendig & Uwe Rascher

Institute of Bio- and Geosciences Plant Sciences (IBG-2)

Instrumentation to measure SIF across spatial scales

- SIF point measurements at leaf level (alfalfa, apple trees and maize) ASD + Fluowat
- SIF point measurements in close distance above the canopy (alfalfa, apple trees and maize) stationary/mobile FloX
- SIF image data at canopy level recorded from 20-30 m above ground (alfalfa, apple trees and maize) – SIF Dual-camera
- SIF image data at canopy level recorded from 1430 m above ground (GLORI, FULL and VERDU pattern) HyPlant

Measuring SIF at the leaf level

ASD field spectrometer + Fluowat leaf clip

Scaling SIF from canopy to leaf level and vice versa

SIF at leaf-level (hemispherical)

down-scaling

 (f_{esc})

SIF at canopy-level (directional)

SIF canopy close-range measurements 400

SECACAM HOMEVista

SIF canopy close-range measurements

SIF UAV measurements – Dual-camera system

UAV measurements at La Cendrosa

- Data acquisition with two different sensor packages
 - Sony α7 (RGB)
 - MicaSense RedEdge MX dual (multispectral) camera

Color infrared composite

True color composite

26 July

12

10

100 m

50

11

5

6

Measuring SIF from the ATR42 (HyPlant)

HyPlant 3

- DUAL module (380 2500 nm)
 VIS/NIR: 3-4 nm FWHM, 1.7 nm SSI
 SWIR: 13 nm FWHM, 5.5 nm SSI
- FLUO module (670 780 nm)
 0.25 nm FWHM, 0.11 nm SSI

HyPlant Mosaic – GLORI mapping – 17 July 2021

> 7(8) flight days = 200 flight lines = 400 data sets (both sensors)

• Each flight day \rightarrow GLORI mapping, FULL mapping, VERDU flight line

NDVI

HyPlant Mosaic – GLORI mapping – 17 July 2021

 \succ 7(8) flight days = 200 flight lines = 400 data sets (both sensors)

• Each flight day \rightarrow GLORI mapping, FULL mapping, VERDU flight line

Quality of HyPlant top-of-canopy reflectance and SIF data

17 Jul

l6 Ju

1.5

b)

Which data is available in the LIAISE consortium?

- Land use/cover mapping of the investigated area
- In-situ and airborne information on soil moisture
- GPP from eddy tower at La Cendrosa and maps of forward GPP models
- Maps of plant biomass and/or LAI
- Maps of evapotranspiration (model outputs)
- Atmospheric data (e.g., AOT, pressure, water vapor) for HyPlant atmospheric correction

Thanks for your attention!

Dr. Bastian Siegmann

Forschungszentrum Jülich Institute of Bio- and Geosciences (IBG-2) <u>b.siegmann@fz-juelich.de</u>

&

University of Twente Faculty of Geo-Information Science and Earth Observation <u>b.siegmann@utwente.nl</u>

