High resolution Soil Moisture mapping in the LIAISE domain

Lucille Mangold Under the supervision of Mary Rose Mangan & Oscar Hartogensis

Motivation

Similar to the flux maps, we want **maps of Soil Moisture** (and other soil properties) to have a **realistic surface representation** for **high-resolution turbulence modeling**.

DATA Products

Туре	Instrument	Spatial resolution	Spatial extent	Depths	Temporal resolution	Temporal extent (Days in July)	Data Provider
In-Situ	Soil moisture probe	Point	7 locations	5, 10, 30cm	30min	15 - 30	Meteo-France, UKMO, WUR, Meteo-Cat, CESBIO, UIB,
Airborne observations	SLAP	100x200m	LIAISE domain (Reduced)	surface	8 flight days during the IOP	15 - 17, 24 - 25, 27 - 29	NASA
	GLORI	100x100m		surface	3 flights days during the IOP	22, 27 - 28	CESBIO
Satellite	SMAP, AMSR-2	1000x1000m (downscaled to 100m)	LIAISE domain (Full)	1cm (X-band) , 2cm (C-band), 5cm (L-band)	Daily	1 - 31 (5, 12, 21, 28)	Planet Labs

Spatial Extent

Satellite GLORI SLAP

Longitude

Kim, E., et. al. (2023). High-Resolution Soil Moisture—A European Airborne Campaign Using NASA Goddard's Scanning L-Band Active Passive (SLAP). *Remote Sensing in Earth Systems Sciences*, 6(3), 309–321. https://doi.org/10.1007/s41976-023-00099-4

In-situ

Zribi, M et al. (2022). Airborne GNSS-R Polarimetric Multiincidence Data Analysis for Surface Soil Moisture Estimation Over an Agricultural Site. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, 15, 8432–8441 <u>https://doi.org/10.1109/JSTARS.2022.3208838</u>

Spatial dynamics

GLORI

SLAP

Temporal dynamics

SWC in La Cendrosa and Els Plans, X_band +1cm 07-2021

What is the best data to use for soil moisture in our flux maps?

	GLORI	In-situ
Spatial extent	Limited	Very limited
Spatial dynamics	Good	None
Temporal extent	3 days	July
Temporal dynamics	Limited	Very detailed
Vertical resolution	Surface	3 depths

Challenge: combine GLORI and in-situ data products together with a detailed landuse map to create a detailed soil moisture map for the whole LIAISE domain

In situ in-depths SM

Create typical ranges of SM per crop type from in situ data.

Temporal distribution \Leftrightarrow spatial distribution

Step 1

Step 2

Evolution in time of in-depths SM based on the temporal dynamics described by in situ

Method Overview

GLORI surface SM

GLORI data gives ranges of SM per crop type, consistent in time

Step 3

Combine in situ and GLORI soil moistures statistically to create consistent soil moisture profiles for each crop type

Step 4

Apply the edited soil moisture in space to the SIGPAC land use map to create 3D soil maps (x, y, z).

Step 1 : Create SM histograms on spatial distribution

- From the in-situ data, create per landuse class a histogram for SM at 5cm depth that is representative for the spatial distribution
- Assumption: temporal distribution of SM observed in-situ in July 🗢 spatial distribution of SM across the domain

Distribution of 5cm SM values for alfalfa

5 cm

Step 2 : Link 5cm SM to SM profile downward

- From the **in-situ data**, for each landuse a certain 5cm SM is linked to a profile that follows from the time-series
- Motivation: Create profiles of soil moisture that are consistent with depth for each land use class

Step 3 : Link 5cm SM to surface SM

Step 4 : Generating the SM maps

Resulting Soil Moisture Map

- 1. For each element in landuse map **take a random sample from 5cm SM distribution** (Step 1)
- 2. Link it to a consistent profile downward (Step 2) and upward (Step 3)
- 3. Randomly assign a consistent profile based on land use type to the land use map (Step 4)
- Done for 22nd, 27th, 28th of July

→ Realistic but not real: Soil Moisture Maps with high spatial resolution (100 m) in 3D for three LIAISE days for the entire LIAISE domain.

Results: Time Evolution

Surface Soil Moisture, 22nd of July

Surface Soil Moisture, 27th of July

Surface Soil Moisture, 28th of July

Results: Depth Evolution

Surface SM – 27^{th} of July

5cm SM – 27th of July

 $30 \text{cm SM} - 27^{\text{th}}$ of July

10 cm SM - 27th of July

Additional Work

- Land Use Map comparison 2020-2021
- Soil Texture
- Soil Temperature

Bibliography

- Kim, E., Wu, A., Izadkhah, H. et al (2023). High-Resolution Soil Moisture—a European Airborne Campaign Using NASA Goddard's Scanning L-Band Active Passive (SLAP). Remote Sens Earth Syst Sci 6, 309–321. <u>https://doi.org/10.1007/s41976-023-00099-4</u>
- Mangan, M. R., O. Hartogensis, A. Boone, O. Branch, G. Canut, J. Cuxart, H. de Boer, M. Le Page, D. Martínez-Villagrasa, J. Ramon Miró, J. Price, J. Vilà and G. de Arellano (2022). The surface-boundary layer connection across spatial scales of thermal heterogeneity. *Agri. and Forest Meteorology*. doi:10.1016/j.agrformet.2023.109452
- Zribi, M., V. Dehaye, K. Dassas, P. Fanise, M. Le Page, P. Laluet, and A. Boone (2022). Airborne GNSS-R
 polarimetric multi-incidence data analysis for soil moisture surface estimation over an agricultural
 site. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote*Sensing. doi:10.1109/JSTARS.2022.3208838

Merci