Characterictics of turbulence observed in the low troposphere over the LIAISE highly-contrasted area

Emmeline FRANCOIS (Master student then) Guylaine CANUT (CNRM), Marie LOTHON (LAERO)

20 kn

Surface patches should be at-least the size of BL height to influence BL characteristics (Shen and Leclerc, 1995)

Kilometer scale surface heterogeneity can induce secondary meso-scale circulations (Avissar and Schmidt 1998)

Introduction

- ➤ The observations used
- ➤ Evolution of the CBL over the 8 IOPs
- > CBL turbulent structure over the two contrasted surfaces

Period of interest and observations used

Period of interest : 8 POI (15, 16, 17, 20, 21, 22, 27 et 28 July 2021)

Area of interest : La Cendrosa & Els Plans

Instrumentation used :

- Instrumented towers (50m)
- UHF wind profilers
- Tethered balloon (only et La Cendrosa)
- Radiosoundings
- ATR-42 aircraft (flights 11h-15h UTC)

Period of interest : 8 POI (15, 16, 17, 20, 21, 22, 27 et 28 July 2021)

Area of interest : La Cendrosa & Els Plans

Instrumentation used :

- Instrumented towers (50m)
- UHF wind profilers
- Tethered balloon (only et La Cendrosa)
- Radiosoundings
- ATR-42 aircraft (flights 11h-15h UTC)

Access to measurements or estimates of :

- Temperature, Moisture, Wind
- At high frequency \rightarrow Turbulent moment, fluxes
- Radiation

Période d'intérêt et moyens disponibles pour l'étude

Period of interest : 8 POI (15, 16, 17, 20, 21, 22, 27 et 28 July 2021)

Area of interest : La Cendrosa & Els Plans

Objective \Rightarrow To study the vertical structure of turbulence from instrumental synergy based on the 8 IOPs

Evolution of the CBL over each surface

Evolution of the CBL over each surface

Time series of radiation components (W.m⁻²) from 50 m towers (top)

 \Rightarrow conditions of dry convection are similar all days

 \rightarrow similar forcing of radiation from one day to the other

ime

Westerly wind during day

Vent d'Ouest en journée

Changement de direction la nuit selon la surface

⇒ Sud à Els Plans

⇒ Nord-Est à La Cendrosa Wind direction more variable during the day (weak) : → Northerly during morning

Vent d'Ouest en journée

Changement de direction la nuit selon la surface

- ⇒ Nord-Est à La Cendrosa
- ⇒ Sud à Els Plans

Wind direction more variable during the day (weak) :

- ⇒ Northerly during morning
- ⇒ Then veering Southeasterly around 1300 UTC: Arrival of La Marinada

Evolution de la CLA au-dessus de chaque surface

LC = La Cendrosa EP = Els Plans

Time series of wind direction (degrees) from 50 m towers

 \Rightarrow Distinction of two periods according to wind direction daytime evolution

Time series of latent heat flux LE (top) and sensible heat flux H (bottom) in W/m², from 50 m towers

Série temporelle mât des flux de chaleur latente LE (en haut) et sensible H (en bas) en W/m²

Decrease of H at La Cendrosa and H remains similar at Els Plans

Evolution de la CLA au-dessus de chaque surface

Série temporelle mât des flux de chaleur latente LE (en haut) et sensible H (en bas) en W/m²

Estimation of Zi over each surface, based on CALOTRITON algorithm (Philibert et al. 2024)

- ⇒ CBL depth increases over the arid area
- ⇒ Thin CBL over the moist area

-- \star -- averaged Zi over the duration of the ATR exploration over La Cendrosa

- Standad deviation
- -- \star -- Averaged Zi over the duration of the ATR exploration over Els Plans
 - Standard deviation
 Subjectives estimates

Turbulence observed over the contrasted surface

Turbulent Kinetic Energy

Zi EP ~ [750 m ; 2000 m] Zi LC ~ [300 m ; 1000 m]

LC = La Cendrosa **EP = Els Plans**

!! Height is normalized by Zi *!!*

Period 1

Period 2

Turbulent Kinetic Energy

Zi EP ~ [750 m ; 2000 m] Zi LC ~ [300 m ; 1000 m] LC = La Cendrosa EP = Els Plans

!! Height is normalized by Zi !!

Period 2

24

Normalized vertical velocity variance

Zi EP ~ [750 m ; 2000 m] Zi LC ~ [300 m ; 1000 m]

Normalized heat vertical transport

Zi EP ~ [750 m ; 2000 m] Zi LC ~ [300 m ; 1000 m]

Normalized heat vertical transport and skewnesses

Zi EP ~ [750 m ; 2000 m] LC = La Cendrosa Zi LC ~ [300 m ; 1000 m] EP = Els Plans

Skewness \rightarrow sign of largest fluctuations

Normalized heat vertical transport and skewnesses

Zi EP ~ [750 m ; 2000 m] Zi LC ~ [300 m ; 1000 m]

LC = La Cendrosa EP = Els Plans

28

Normalized temperature variance

Zi EP ~ [750 m ; 2000 m] Zi LC ~ [300 m ; 1000 m]

Normalized temperature variance

Zi EP ~ [750 m ; 2000 m] Zi LC ~ [300 m ; 1000 m]

Normalized temperature variance

Zi EP ~ [750 m ; 2000 m] Zi LC ~ [300 m ; 1000 m]

Moisture Skewness

Conclusion and perspectives

Conclusion :

- A really nice dataset to explore turbulence over the surface heterogeneity induced by irrigation and the interactions between different CBL
- A statistical study (Variances, Covariances et Skewness) → important for the study of turbulent processes
- Very typical CBLs over each surface, with interesting comparison with empirical laws found in the litterature
- The distinction of 2 periods within the 8 IOPs showed consistent profiles within each period, but the study of moist area is challenging during the second period

Perspectives :

- Explore the horizontal transports of momentum and heat and spatial variability →
 Detect potential circulations between the two areas
- Make use of the transverse legs from one area to the other \rightarrow nice transitions from low to very high turbulence
- Use numerical simulation \rightarrow with the irrigation scheme proposed by CNRM/GMME/surface in Meso-NH

Thank you for you attention !

- Boone, A. et al., 2019. Land surface Interactions with the Atmosphere over the Iberian Semi-arid Environment (LIAISE). Gewex News, 29(1), 8-10.
- Canut, G., Interaction Mousson/Harmattan, échanges de petite échelle. Climatologie. Université Paul Sabatier Toulouse III, 2010. Français. NNT : . tel-00521828
- Canut, G., et al., 2023 : Surface energy balance and thermodynamic measurements over a mobil platform on Lake Ivars during the LIAISE field campaign [Poster]. Workshop Gewex, Lerida, Espagne.
 https://hymex.fr/liaise/LIAISE conf/Workshop March 2023/presentations/tuesday/Posters/Canut poster ivars 2023.pdf
- Druilhet, A., et al. 1983: Experimental Studies of the Turbulence Structure Parameters of the Convective Boundary Layer. J. Appl. Meteor. Climatol., 22, 594–608, https://doi.org/10.1175/1520-0450(1983)022<0594:ESOTTS>2.0.CO;2.
- Kaimal et al., 1976 : Turbulence Structure in the Convective Boundary Layer. J. Atmos. Sci., 33, 2152–2169, https://doi.org/10.1175/1520-0469(1976)033
 <2152:TSITCB>2.0.CO;2.
- Lenschow, D. H. et al., 1980: Mean-Field and Second-Moment Budgets in a Baroclinic, Convective Boundary Layer. J. Atmos. Sci., 37, 1313–1326, https://doi.org/10.1175/1520-0469(1980)037<1313:MFASMB>2.0.CO;2.
- Moeng, C., and J. C. Wyngaard, 1984: Statistics of Conservative Scalars in the Convective Boundary Layer. J. Atmos. Sci., 41, 3161–3169, https://doi.org/10.1175/1520-0469(1984)041<3161:SOCSIT>2.0.CO;2
- Philibert et al., 2023 : A layer convective boundary layer height estimation algorithm from UHF wind profiler data. Sub. To ACP

Appendices

 \Rightarrow Quantifie l'intensité de la turbulence (m²/s²)

LC = La

Cendrosa EP = Els Plans

LC = La Cendrosa EP = Els Plans

 \Rightarrow Quantifie l'intensité de la turbulence (m²/s²)

Fluctuations :

$$\begin{aligned}
x' &= x - \bar{x} \\
\\
\sigma_x^2 &= \frac{1}{N} \Sigma (x - \bar{x})^2 = \overline{\Sigma (x')^2} \\
\\
\text{Variances} : \\
\overline{x'y'} &= \frac{1}{N} \Sigma \big((x - \bar{x}) * (y - \bar{y}) \big) = \overline{\Sigma (x' * y')} \\
\\
\text{Covariances} :
\end{aligned}$$

Coupe hauteur temps du vent par le radar UHF (Low Mode, 2 min

LC = La Cendrosa EP = Els Plans

La Cendrosa

Els Plans

Coupe hauteur temps du vent par le radar UHF (Low Mode, 2 min

LC = La Cendrosa EP = Els Plans

Arrivée de la Marinada plus tôt à EP qu'à LC

Coupe hauteur temps du vent par le radar UHF (Low Mode, 2 min

LC = LaCendrosa EP = Els Plans

45

Arrivée de la Marinada plus tôt à EP qu'à LC

Estimation de Zi par l'algorithme CALOTRITON (Philibert et al. (2023))

$$NP_{x} = \frac{\left[C_{n}^{2}/\overline{C_{n}^{2profil}}\right]}{\left[\sigma_{w}^{x}/\overline{\sigma_{w}^{xprofil}}\right]}$$
(3.1)

(3.1): Avec C_n^2 le coefficient de structure d'indice de réfraction de l'air, σ la variance de la vitesse verticale, et x l'ordre de l'équation. x = 3 représente la meilleure estimation (Philibert et al. (2023)). Les lignes représentent un opérateur de moyenne, qui permet d'adimensionaliser NP3.

LC = La

Cendrosa EP = Els Plans

49

Rapport de Bowen

• Les flux de chaleur latente LE (en haut) et sensible H (en bas) en W/m²

LC = La Cendrosa EP = Els Plans

• Les flux de chaleur latente LE (en haut) et sensible H (en bas) en W/m²

Intensification du LE à La Cendrosa et H pratiquement nul à Els Plans

Bilan énergie moyen, Rnet moyen, albédo moyen (à gauche) et Flux max (à droite)

Taux évapotranspiration sur le lac lvars

LC = La Cendrosa EP = Els Plans

Canut et al. (2023), Surface energy balance and thermodynamic measurements over a mobil platform on Lake Ivars during the LIAISE field campaign. [Poster]. Workshop Gewex, Lerida, Espagne.

TKE non nulle et CLA interne

Potential Temp. (left) & Mixing Ratio Vapor (right) : 20210727 (flight 7) LC = La Cendrosa

Transport d'humidité

Variance de la température potentielle normalisée par θ^{2} .

Zi EP ~ [750 m,; 2000 m] Zi LC ~ [300 m ; 1000 m]

Zi EP ~ [750 m,; 2000 m] Zi LC ~ [300 m ; 1000 m]

Les premiers résultats : mesures en surface (mâts instrumentés)

	Dates	Vols	\overline{Zi}	$\overline{\theta}$	$\overline{T_{v}}$	B ₀	w_*	θ_*	$(\overline{w'\theta'})_S$	$(\overline{w'q'})_S$	Hauteur de la	
I	a Cendrosa		BL1(m)	(K)	(g.kg ⁻ 1)	(à 3m)	$(m.s^{-1})$	(K)	$(K.m.s^{-1})$	$(m.s^{-1}).(g.kg^{-1})$	luzerne (cm)	
	15/07/21	1	909	289	8,3	1,1	1,72	0,098	0,17	0,083	17,4	
	16/07/21	2	638	291	10,1	1,0	1,4	0,093	0,13	0,081	22,6	
	17/07/21	3	525	292	11,0	0,7	1,24	0,09	0,11	0,13	28,2	
	20/07/21	4	343	295	9,6	0,2	0,73	0,048	0,035	0,14	39,9	
	21/07/21	5	311	294	11,2	0,1	0,76	0,058	0,044	0,17	40,9	
	22/07/21	6	650	295	9,5	NaN	0,52	0,013	0,0068	0,15	47,6	
	27/07/21	7	343	292	10,7	NaN	0,61	0,034	0,021	0,20	62,9	
	28/07/21	8	1057	294	12,0	0,2	1,38	0,055	0,076	0,14	67,9	
	Dates	Vols	Zi	$\overline{\theta}$	$\overline{r_v}$	B ₀	<i>w</i> *	θ_*	$(\overline{w'\theta'})_S$	Vent à 50	Vent à 500 hPa	
	Els Plans	\$	BL2(m)	(K)	(g.kg ⁻¹)	(à 3m)	(m.s ⁻¹) (K)	(K.m.s ⁻¹	(valable pour BL1 et BL2)		
	15/07/21 1		1157	291	8,0	NaN	2,4	0,15	0,36	N (faible)		
S	16/07/21	2	824	292	10,7	25,6	1,97	0,14	0,28	NO (mo	dérée)	
T	17/07/21 3		696	294	12,5	28,4	1,76	0,14	0,24	NO (modérée)		
ר	20/07/21 4		1425	298	9,2	24,6	2,25	0,11	0,25	O (faible)		
Ц N	21/07/21	5	1136	297	10,5	28,0	2,3	0,15	0,37	NO (mo	NO (modérée)	
	22/07/21	6	1682	297	8,2	19,9	2,37	0,11	0,25	O (mod	O (modérée)	
	27/07/21	7	1894	293	10,3	14,1	2,45	0,099	0,24	O (mod	O (modérée)	
	28/07/21	. 8	1479	296	13,4	31,5	2,1	0,092	0,19	O (mod	O (modérée)	

Les premiers résultats : mesures en surface (mâts instrumentés)

L'énergie cinétique turbulente = TKE (m²/s²)

période 1 \rightarrow tke identique avec max à 13h période 2 \rightarrow différente avec un max le 20/07 et un décalage de du max de tke entre 13 et 17h LC = La

Cendrosa EP = Els Plans

exemple du 17/07/2021

LC = La Cendrosa EP = Els Plans

60