# What could we infer from lidar measurements during HILIAISE?

Focus on the convective boundary layer.





# F. Gibert, D. Edouart, P.Monnier, C. Cénac, J. Lopez, J.Collignan, H. Salvádor, V. Gauthier

LMD/IPSL, Ecole Polytechnique, Palaiseau, France LIDAR 1 Acknowledgments:

Met Office team at El Plans site: J. Price, J. Brooke

# **Scientific objectives:**

- address the issue of surface scalar flux heterogeneity (dry and irrigated region)
- address the issue of **scalar transport dissimilarity** (GHGs space mission interest)
- find advanced **model parametrizations** of transport processes for both convective and stable boundary layers in different climate regions (temperate and semi-arid in HILIAISE)

Path the way to a **3-D thermodynamic view** of the atmosphere that can match current/future Navier-Stokes equation simulation (LES, DNS...)

## Instrumentation and site



Site: El Plans (41.587, 1.0299)

Period: 15-30 July 2021

#### Instrumentation:

3D- lidars mobile station
COWI : CO2 & wind , Doppler and DIAL system at 2 μm
TERA: temperature & H2O, Raman lidar

at 0.355 nm

# **Observation set-up**



1 -Vertical mode (35 min – 0.2-12 km)

2- RHI mode: range height indicator (20 min – 0-100m)

3 –PPI mode: plane polar indicator mode (5 min - ~10m)

#### **Example of measurements**



# **Example of 1h of measurements**



Time resolution: 8 s Space resolution: 50 m

RHI: fixed azimut – vertical cross-section of the atmosphere 0-6° at 0.05°/s

PPI: fixed elevation horizontal cross-section of the atmosphere 30° at 0.1°/s

> sea breeze event cold and humid layer that propagates close to the ground

# Products (1/2)

|                                                                                          | Units                    | Resolution | Correction               | Comments                                                                                                                                                                                |
|------------------------------------------------------------------------------------------|--------------------------|------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lidar reflectivity 355, 2051 nm<br>Radial wind speed<br>Temperature<br>Specific humidity | a.u.<br>m/s<br>K<br>g/kg | 8s, 50 m   | no<br>no<br>yes RS<br>no | <ul> <li>space resolution can be changed for<br/>temperature and specific humidity and<br/>not for wind speed 6 min/ 7.5 m</li> <li>overlap/ bias correction for temperature</li> </ul> |

| 1-VERTICAL                                                                                                                                                                                            | Units                  | Resolution                  | Correction | Comments                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| zi<br>w*<br>NBV -> Ri                                                                                                                                                                                 | m                      | 1h, 50m                     |            | <ul> <li>-zi: using minimum sensible heat flux (≠</li> <li>lidar reflectivity or potential temperature)</li> <li>-w*: using in situ surface sensible heat flux</li> <li>- Ri: using UHF wind shear measurements</li> </ul> |
| Second-order moments<br>variances: $\overline{\theta'}^2, \overline{q'}^2, \overline{w'}^2$<br>covariances, flux $\overline{w'\theta'}, \overline{w'q'}, \overline{q'\theta'}$<br>Third order moments | <br>K.m/s,<br>g/kg.m/s | 1h, 50m                     | no         | typical vertical period: 9.4 -10 h instrumental and sampling uncertainty                                                                                                                                                   |
| Along wind integral scales<br>horizontal<br>vertical                                                                                                                                                  | s<br>m                 | <b>1h, 50m</b><br>1h, 500m* | no         | integral scales should be larger than 8s<br>(horizontal) and 50 m (vertical)<br>* depend on data vertical resolution                                                                                                       |
| Turbulent kinetic energy dissipation<br>rate<br>and destruction rates                                                                                                                                 |                        | 1h, 50 m                    | no         | using variance and integral scale                                                                                                                                                                                          |

# Products (2/2)

| 2-RHI (vertical cross section)                                                                       | Units | Resolution         | Correction | Comments                                                                                                                                       |
|------------------------------------------------------------------------------------------------------|-------|--------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Range resolved (50 m)<br>low altitude (0-100m @ 1 km)<br>vertical profiles<br>reflectivity, VR, T, q |       | 7m @ 1 km<br>2 min | no         | 8 RHI / hour<br>vertical resolution depends on the distance<br>8 s -> 0.4° -> 7 m @ 1 km                                                       |
| Range resolved surface fluxes heterogeneity using MOST                                               |       | 1h, 250 m          | no         | needs for u <sup>*</sup> , LMO estimated by 1) in situ<br>EC station, 2) RHI wind profile (wind<br>direction from PPI), 3) PPI integral scales |

| 3-PPI (horizontal cross section)                              | Units | Resolution                   | Correction | Comments                                                                                                                                |
|---------------------------------------------------------------|-------|------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Low altitude (~10m), 30°, 2D<br>map<br>reflectivity, VR, T, q |       | 50m x 14m @<br>1 km<br>5 min | no         | 1 map/ hour<br>- horizontal resolution depends on the<br>distance<br>- altitude depends on terrain height<br>8 s -> 0.8° -> 14 m @ 1 km |
| Wind speed direction as a function of distance                |       | 50 m, 5 min                  |            | 1 profile/ hour                                                                                                                         |
| Along wind and cross wind integral scale                      |       | 5 min                        | no         | <ul> <li>needs for horizontal wind direction as a function of distance</li> <li>can be used for u* and Lмо estimates</li> </ul>         |

## Precision and bias



# Turbulent scales and lidar time/space resolution



Spatial / temporal coherent structures

Integral scale:

$$I = \max\left(\int_{0}^{\infty} ACR(x) dx\right)$$

- → Similar length scale for wind and temperature ~ 25 s
- → Larger length scale for densities (particles, H2O) ~ 40 s

Time and space average of lidar measurements have to be lower than temporal and space integral scales of turbulence respectively to avoid biases in statistical calculations (Flux, moments) 10

# Lidar eddy-covariance flux estimates



(Giez 1999; Gibert, 2011; Behrendt 2019)

→ significant noise contribution for w'T' (maximum is not clearly seen in cross-covariance, integral of co-spectrum is not directly applicable like for in situ data)

→ time synchronization (lidars acquisition, scanning devices) is necessary

# Flux profiles - 2021/07/16 case



- RS gives an instantaneous profile vs lidar provides a mean in time (LES gives a ensemble mean) - ergodicity issue?
- RS profile is not vertical as the balloon moves horizontally
- Mean gradient in temperature and water vapour seems to follow different laws (advection issue for water vapour)

#### Parametrization of the interfacial layer - 2021/07/16 case



For the first time we have the opportunity to test parametrizations in the entrainment layer Temperature seems to follow gradient Richardson based similarity law for flux and variance. This seems to be more difficult for water vapour

(Sorbjan, BLM, 2005, 2006; Wulfmeyer, JAS, 2016)