

Influence of Irrigation On Surface - Atmosphere Interactions: Insights from simulations with irrigation

Tanguy LUNEL, Aaron BOONE, Patrick LE MOIGNE LIAISE Working Group 2 2023 / 01 / 19

Plan

- Introduction & Context
- Methodology: Models and observation data
- Results
 - At the surface
 - Circulations & ABL
- Conclusions and prospects

Context

- Irrigation in surface atmosphere coupled models nowadays:
 - Rare, approximative
 - Difficulties: where, when and how irrigation is performed?

Lleida region seen by Sentinel 2 on 2021-07-22

Land Surface Temperature seen by MODIS on 2021-07-22

T2M forecasted by AROME on Lleida region For 2021-07-22T12

- Scientific questions:
 - What is the impact of irrigation on surface and atmospheric boundary layer (ABL)?
 - How important is it to consider irrigation in models? And how to represent it?

Models: standard configuration

General:

• From 2021/07/14 to 30 at 2km

Atmospheric model: Meso-NH

- Version 5-5-0
- Forced by ECMWF
- No deep convection parameterization
- Shallow convection parameterization
- Turbulence representation:
 - 1D (L: Bougeault & Lacarrère 1989)

Surface model: Surfex

- Photosynthesis Evapotranspiration scheme adapted to dry conditions (Calvet et al. 2004)
- Diffusive scheme for heat and water with 14 layers in the soil
- No irrigation

Models: irrigation parameterization

Main modifications:

- Land cover database Ecoclimap-II (1999-2005): research and modification of irrigation related covers into a « pure » irrigation cover.
 - − Main changes: LAI, C3 \rightarrow C4, etc

- Surfex: 1st parameterization of irrigation simplistic vision (overestimation)
 - All irrigated zones start at field capacity
 - Water continuously added (0,36mm/h)

N.B.: Standard case still can see some features of irrigated areas

Observation data

- In irrigated zone
 - La Cendrosa: 50m mast + Radiosoundings CNRM
 - Irta-corn: Surface Energy Budget station UIB
- In rainfed/semi-arid zone
 - Els Plans: 50m mast + Radiosoundings UKMO

La Cendrosa

Results: Surface

Irrigation characteristics

Cendrosa: irrigation events every 13 – 20 days

- Irrigated model at field capacity
- Standard model at wilting point or lower (negative SWI)

Irta-corn: irrigation events every 8 - 9 days

Irrigation characteristics

Cendrosa: irrigation events every 13 – 20 days

- 71mm added in first 30cm (underestimated)
 - Eq. ~9 days of continuous irrigation in the model

Irta-corn: irrigation events every 8 - 9 days

- 107mm added in first 45cm
 - Eq. ~16 days of continuous irrigation in the model

Irta-corn

- General overestimation of LE with irrigation model
- Overestimation of specific humidity during daytime
- No clear impact of local irrigation events on daily fluxes

Irta-corn

- Sensible heat flux drastically improved with irrigation model
- Warm bias during nighttime
- No clear impact of local irrigation events on daily fluxes

Cendrosa

- Major bias in la Cendrosa during the SOP is the LAI:
 - Alfalfa cut on july 5

From Bastian Siegmann presentation (LIAISE WG1 2022-11-24)

- Nominal fluxes reached around july 20
- No clear impact of local irrigation events on daily fluxes

Cendrosa

• Temperature and humidity at 2m are okay even before july 20

Conclusions on surface modelling

- Adding simplistic irrigation parameterization can improve modelled fluxes and temperatures.
- Temperature and humidity at 2m are more influenced by neighbourhood than by direct surface.
- Irrigation events do not result in noticeable changes in heat fluxes the days after.
 - \rightarrow Representing regional irrigation in models is important.
 - \rightarrow But representing time and precise location of each irrigation event is not important.

Results: Circulations in the ABL

Circulations

- Circulations in the Atmospheric Boundary Layer
 - Influence of irrigation on height of ABL?
 - Irrigation breeze?
 - Stability and humidity in ABL?
- Surface sites and radiosoundings: Cendrosa and Els Plans

Circulations

- Zoom on July 21-22
 - Thermal low
 - South-East wind near the surface
 - The hottest clear days
- Nested simulation with horizontal resolution of 400m
 - No shallow convection / 3D turbulence / adaptive mixing length for grey zone of turbulence

Surface winds: Cendrosa

- Wind speed slightly better with irrigation model
- Wind direction changed around noon: irrigation breeze

Wind speed and direction at Cendrosa

Surface winds: Els Plans

• Wind direction changed around noon: irrigation breeze

Wind speed and direction at 10m at Els Plans

Surface winds: Els Plans

• Wind direction changed around noon: irrigation breeze

Wind speed and direction at 10m at Els Plans

Surface winds

• Horizontal winds on july 22 at 12pm: irrigation breeze confirmed in the model

barb increments: half=5kt=2.57m/s, full=10kt=5.14m/s, flag=50kt=25.7m/s

barb increments: half=5kt=2.57m/s, full=10kt=5.14m/s, flag=50kt=25.7m/s

Surface winds

• Horizontal winds on july 22 at 12pm: irrigation breeze confirmed in the model

barb increments: half=5kt=2.57m/s, full=10kt=5.14m/s, flag=50kt=25.7m/s

barb increments: half=5kt=2.57m/s, full=10kt=5.14m/s, flag=50kt=25.7m/s

Circulations

• Clear irrigation breeze:

Cross section on 20210722-1200-irr_d2-verti_proj-domain2

10.0m/s

313

311

309

307

305

0.25

25.5

theta [K]

STD

Cross section on 20210722-1200-std_d2-verti_proj-domain2

10.9

14.6 distance [km]

18.2

elsplans

21.8

Circulations

• Clear irrigation breeze : transition zone elsplans

IRR

Cross section on 20210722-1200-std_d2-verti_proj-domain2

STD

Radiosoundings: winds

Vertical profile for wind at cendrosa on 20210722-1200

Vertical profile for wind at elsplans on 20210722-1200

• Improvement in circulations as well

Radiosoundings: potential temperature

- Effect on ABL over irrigated area:
 - Stabilisation

- Effect on ABL over rain-fed area:
 - Strengthening of updraft

Radiosoundings: mixing ratio

- Effect on ABL over irrigated area:
 - Humidification

- Effect on ABL over rain-fed area:
 - Humidification

No clear improvement or deterioration over Els Plans:

- Transition zone in the model
- Overestimation of updraft and humidity

Conclusions and prospects

- Influence of irrigation in semi-arid environment is major, and affects surface conditions, fluxes and circulations in the ABL.
- Not considering it in models is a source of error.
- A simple parameterization of irrigation allows for improvement in representation of surface and ABL characteristics.
- More complex irrigation parameterization may improve simulated humidity.
- Representing time and precise location of each irrigation event is not important in our model.
- Prospects :
 - Irrigation parameterization
 - depending on SWI threshold (threshold at 0,5 SWI \rightarrow 100mm)
 - with constant SWI = 0,8.
 - Processes studies (TKE, ...)

Thanks for you attention

Circulations

Cross section on 20210722-0800-irr-verti_proj

Winds

• IRR – STD:

Cross section on 20210722-1200-std_d2-verti_proj-domain2

Ground temperature

- Ground temperatures:
 - overestimated during daytime
 - underestimated during night

- Irrigation brings improvement
- Immediate effect of irrigation event is weak

Flights ATR-42

• Transects at different altitudes over irrigated and semi-arid zones

Flights ATR-42: Turbulences

- Global coherence of TKE evolution along ABL
- Not enough turbulence in models compared to observations over BL2

Weather patterns – West and thermal low

20210722-0300 - MSLP for simu irr_d1

Page 36